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Introduction 
Random numbers are a necessary input for the operation of many technological 
innovations we use every day. With machine learning innovation and interest at an all-
time high, this paper explores how a trained machine learning model can be used to 
generate true random numbers. 
 
Background 
As computational technology has progressed, the need for truly random numbers in 
computer science grew. Algorithms for generating random numbers were quickly 
designed, however these algorithms required a seed input to start initiate the 
generation. Seeds were often used from sources such as the system tie recorded by 
the operating system. These types of random numbers were known as pseudo-
random as the process seeding the number generator is not random. Soon, computer 
science required true random numbers for fields such as machine learning and 
cryptography. The seeds for the number generators used in these applications 
extracted data from a random process found in nature. Commonly used random 
processes include radioactive decay, Brownian motion, and atmospheric noise. The 
National Institute for Standards and Technology (NIST) maintains and lists 
standardized testing procedures for evaluating the effectiveness of random number 
generators for high security applications such as cryptography [1]. 
 
Motivation 
Current popular random process used for true random number generation are 
expensive and inaccessible for many organizations. Researchers are exploring other 
types of natural phenomena that are suitable for true random number generation [2]. 
Lava lamps are vases that display the movement of a gel when it is exposed to heat 
and allowed to cool after rising. The moved of the gel is an unpredictable and high 
entropy process. By extracting data from this random process, an inexpensive true 
random number generator could be constructed. 
 

 
Figure 1: Snap Shots of Lava Lamp Illustrating Random Process 



Methodology 
To extract the data from the lava lamp that describes the random process, the 
following methodology will be used. First, pictures will be gathered from the lava lamp 
and these pictures will be annotated. Next these pictures will undergo data 
preprocessing to be prepared for input to an object detection machine learning 
model. This model will be trained and continually evaluated until the model’s error is 
sufficiently low. Finally, the model with be tested and used to seed a random number 
generator. By evaluating the histogram produced by a normally distributed random 
number generator, the effectiveness of the model at generating true random numbers 
will be determined.  
 

 
Figure 2: Random Data Extraction  

 

Data Gathering 
Pictures of the lava lamp were taken at 5 second intervals to ensure enough time had 
passed for the lava lamp to change positions. Pictures were taken with the lava lamp 
in two separate locations to help ensure the dataset could train the model to function 
when the lava lamp was in different locations. To further help with the flexibility of the 
applicability of the model, pictures were taken from a variety of angles and positions. 
In total 164 images were taken providing 699 samples in total (average of 4.3 
samples/image). 
 



 
Figure 3: Image Annotation 

A python program called LabelImg (see above figure) was used to annotate these 
images. The resulting annotation output was saved in xml format for later processing. 
 

Data Preprocessing 
The xml file from the annotation stage provided a convenient format to store 
annotation data from a specific image. The xml annotation data described the 
coordinates of each bounding box (x1, y1, x2, y2) and the name of the class describing 
the object within the bounding box (“lava”). This data was loaded into a pandas 
DataFrame using he xml module from python to parse the xml. The records of the 
DataFrame were randomly shuffled to evenly distribute the various backgrounds and 
image angles throughout the dataset. Once complete, this DataFrame was exported 
to a csv file for convenient and compact storage. 
 



Upon reviewing the csv file, it was determined that the annotation software produced 
some invalid data samples (bounding box coordinates outside the range of the 
picture). Thus, a python script was used to check every sample’s data for validity and 
removed any records that did not meet the requirements from the csv. The final step 
to finish preparing the data was to convert the csv to a TensorFlow record file. This 
is a data format based on NumPy arrays and is a standardized layout for data being 
fed into TensorFlow models. 

 
Figure 4: Data Preprocessing Steps 

 

Model Selection 
Object detection machine learning models are complex to design due to the multiple 
data inputs that need to be fed into the network and the multiple targets the network 
must predict. The inference and training should be performed as quickly as possible; 
however, the complex design makes this challenging. TensorFlow has many prebuilt 
models publicly available that have been researched. Many of these models are 
available pre-trained on a standardized data set either for immediate use or to 
shorten training time to learn detection for new objects. It should be noted that these 
object detection models are only compatible with TensorFlow versions 1.x and Python 
versions 3.7 and below. 
 
There are numerous notable network styles to consider, and active research is being 
performed to design more efficient and accurate object detection networks. The 
three main models considered were Convolutional Neural Networks (CNN), Single 
Shot Detectors (SSD), and Spatial Pyramid Poolers (SPP). The below table 
summarizes the main benefits and drawbacks of these models. Other models should 
be evaluated in future studies. 
 
 
 
 
 
 
 



 CNN SSD SPP 
Benefits - Deeply studied 

- Easier to 
understand and 
self-architect 
 

- Best detector for 
speed and 
accuracy for 
feature map 
extraction and 
convolutional filter 
applications [3] 

- Plentiful 
documentation 

- Well suited to 
arbitrary image 
sizes and scales 

- Avoids repeatedly 
computing 
convolutional 
features 

Drawbacks - Training is 
unpredictable and 
long 

- Training is 
multiphase 

- Network 
predictions are 
comparatively 
slow at inference 
time 

 - Poor 
documentation 

- Few practical 
examples of 
implementation 

Models R-CNN, Fast-R-CNN, 
Faster-R-CNN, 
Mask-R-CNN 

MobileNet, ResNet, 
SpaghettiNet 

SPPNet 

Figure 5: Object Detection Model Summary 

An SSD was used as this model had plentiful documentation was available online and 
reported the fastest training times. Specifically, the ssd_mobilenet_v2 model was 
selected and a pre-trained checkpoint form the common objects in context (COCO) 
dataset was utilized. The below figure depicts the network architecture of a similar 
SSD model [3]. 

 
Figure 6: SSD Network Architecture 

  



Training and Evaluation 
For conducting training on prebuilt TensorFlow models, TensorFlow provides a 
training script that simultaneously trains and evaluates the model. The model was 
trained with the recommended learning rate of 0.004 and an exponential learning 
decay factor of 0.95. The input was data was split into 150 images for training and 14 
images for evaluation. The TensorFlow script performed 100 steps of training, then 
ran the model against the evaluation set to monitor progress. The overall total loss 
equation is depicted below. It is a function of the error in the confidence of the 
predicted bounding box location, and a function of location loss. The location loss 
describes how far the predicted bounding box is from the target ground truth. The 
training script also output the current intersection over union (IoU) performance 
 

𝐿(𝑥, 𝑐, 𝑙, 𝑔) =
1
𝑁 (𝐿!"#$

(𝑥, 𝑐) + 	𝛼𝐿%"!(𝑥, 𝑙, 𝑔) 
Figure 7: MobileNet SSD Total Loss Function 

The initial total loss started out at 95. For the first 24 hours of training, the total loss 
decayed linearly to 13. During the final 12 hours the error decayed exponentially from 
13 to a final total loss of 10.54. Some IoU values rapidly rose to 1, while others 
struggled to get above 0.05. The ideal total loss by the end of training was less than 
1, with values below 2 also being accepted. Due to time and computational 
constraints, the model was not able to be trained to this accuracy. Having a larger 
data set would be beneficial for improving the final trained state of the model. 

Model Performance 
To analyze the performance of the model, inference was performed on the entire data 
set. The detection confidence scores were below the target of >0.9 at an average 
0.34. While disappointing, this was expected with the high total loss and IoU errors at 
the end of model training. The top and bottom 3 detection confidence scores were 
recorded and the images were displayed with the ground truth and predicted 
bounding boxes. The figure below depicts the highest performing image. Inference 
time also came in lower than expected with an average inference time of 1.29 seconds 
per image. 

 
Figure 8: Trained Model Performance 



Random Number Generation 
To generate random numbers, data about from the random process displayed by the 
lava lamp needs to be extracted. With the trained model, the number generator can 
now be tested. The below equation was used to generate a seed for a random number 
generator from the data output after inference. The equation calculates the center of 
each blob of lava, and then calculates the weighted average position by multiplying 
each pair of coordinates by the size (bounding box area) of the lava blob. Finally, the 
x and y coordinates were multiplied together to get a single seed number. 
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Figure 9: Random Number Seed Extraction Equation 

The seed generation was tested by generating numbers in the ranges [0, 10], [0, 100], 
and [0, 1000]. The below histograms depict the distributions of the generation. Ideally 
the plots should be uniform and rectangular, however I predict there are two factors 
preventing this result. First, the model is not accurate enough to successfully extract 
the random data from the lava lamp. This likely results in a bias being introduced that 
disqualifies the result from being considered a true random number generator. 
Second, the data sample is not large enough to see the true distribution of random 
numbers being generated as the sample sizes tends to infinity. 
 

 
 

Figure 10: Random Number Generation Distribution 

  



Future Work 
The most important next step is to improve the accuracy of the object detection 
model. First, the process for picturing gathering will be automated to collect a much 
larger data set of images. These new images will also need to be annotated. Using 
the new data set, multiple instances of the new model will be trained. These new 
instances will experiment with different configuration such as no starting checkpoint, 
varying learning rates, and different variations of prebuilt TensorFlow object 
detection models. Training these models on google collab will be explored to improve 
the training time currently being performed on a PC. 
 
The improved model will then be tested for its effectiveness at extracting random 
data which will be used to determine if the numbers being generated are true random 
numbers. NIST maintains standardized testing procedures for evaluating the 
effectiveness of random number generators for high security applications such as 
cryptography [1]. The dataset will be evaluated to determine its efficacy for true 
random number generation. 
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Background

• Random numbers are needed in many areas of computer science
• Cryptography

• Machine Learning

• Typically, a computer only generates pseudo-random numbers

• By extracting data from a source of entropy (random process), a true 
random number can be generated
• Radioactive decay

• Brownian motion

• Atmospheric noise

• Researchers are exploring other natural phenomena that random 
data can be generated from (see paper here)

https://research.ijcaonline.org/volume78/number16/pxc3891419.pdf


Problem & Motivation

• Extracting data from sources of 
entropy mentioned previously 
such these is complex and 
expensive
• Problem: Use entropy produced 

by a lava lamp to generate true 
random numbers
• The positions and sizes of the 

“lava” in the lava lamp will be 
random
• By detecting the position and 

sizes of the “lava”, this data can 
be fed into a random number 
generator

ML Extraction

Random Numbers



Step 1: Data Gathering & Annotation

• Pictures were taken with 
2 different backgrounds 
at 5 second intervals

• Variety of angles and 
positioning used

• Program called labelImg
was used to annotate 
and save in xml format

164 699images samples



Step 2: Data Preparation

XML
• Stores bounding box sizes and position
• Xml module makes it easy to extract data

DF
• Xml data loaded into a DataFrame

CSV
• Exported to csv for easy storage and viewing
• Wrote a data validator to remove invalid entries

TFREC
• Data format based on NumPy arrays
• Standardized for feeding into TensorFlow models



Step 3: Model Selection

• Slow training for 
object detection

• Uses selective 
search algorithm 
and bounding box 
regression
• Models are R-

CNN, Fast-R-CNN, 
Faster-R-CNN, 
Mask-R-CNN

• Good for 
detecting images 
of varying sizes
• Fast training and 

inference
• Plentiful 

documentation
• Models are 

Inception, 
MobileNet, 
ResNet, 
SpaghettiNet

• Good for arbitrary 
image size and scale

• Avoids repeatedly 
computing 
convolutional 
features

• Popular model is 
SPPNet

CNN
Convolutional Neural Network

SSD
Single Shot Detector

SPP
Spatial Pyramid Pooling



Step 4: Training and Evaluation
• Trained with a model called ssd_mobilenet_v2

• Started with checkpoint of model after being pretrained on the COCO data set 
(common objects in context)

• Used the recommended learning rate of 0.004 with an exponential decay factor of 
0.95

• Training data was 150 images, evaluation set was 14

• Using a TensorFlow provided script model was trained through 100 steps, then 
used an evaluation set to monitor progress

• First 24 hours linear decay from 95 à 13, next 12 hours exponential decay very 
slow

• Total of 11508 steps with final total loss of 10.54 (total loss compares error from 
class and position detection)

• Some IoU values struggled to get close to 1 (how well the predicted bounding box 
matches ground truth)



Step 5: Model Performance
• Very low detection confidence 

scores (average of 0.34)
• Occasionally can detect 

correctly, but errors need to be 
lower and confidence scores 
need to be >0.9
• Takes approx. 1.29 secs to 

perform an inference on an 
image

Ground Truth
(Target)

Model Output



Random Number Generation

• Used python random number and seeded positions of boxes to 
a generator

• Generated numbers between 0à 1000



Next Steps

• From scratch (no checkpoint)

• Varying learning rate

• Other pre-trained checkpoints

Automated process for data gathering

Annotate this data to produce a much larger data 
set

Train multiple instances of model using google collab

Test according to NIST standards outlining requirements 
for true random number generation available here

https://csrc.nist.gov/projects/random-bit-generation/documentation-and-software

