

Machine Learning for Random
Number Generation

Dylan Rae | 30020151

ENEL 525

Prepared for Dr. Leung & King Ma

December 17, 2021

Table of Contents

Introduction ... 3

Background .. 3

Motivation ... 3

Methodology ... 4

Data Gathering ... 4

Data Preprocessing ... 5

Model Selection .. 6

Training and Evaluation .. 8

Model Performance .. 8

Random Number Generation .. 9

Future Work ... 10

References .. 10

Appendix .. 10

Presentation Slides .. 10

Table of Figures

Figure 1: Snap Shots of Lava Lamp Illustrating Random Process ... 3
Figure 2: Random Data Extraction .. 4
Figure 3: Image Annotation ... 5
Figure 4: Data Preprocessing Steps .. 6
Figure 5: Object Detection Model Summary .. 7
Figure 6: SSD Network Architecture ... 7
Figure 7: MobileNet SSD Total Loss Function .. 8
Figure 8: Trained Model Performance .. 8
Figure 9: Random Number Seed Extraction Equation .. 9
Figure 10: Random Number Generation Distribution ... 9

Introduction
Random numbers are a necessary input for the operation of many technological
innovations we use every day. With machine learning innovation and interest at an all-
time high, this paper explores how a trained machine learning model can be used to
generate true random numbers.

Background
As computational technology has progressed, the need for truly random numbers in
computer science grew. Algorithms for generating random numbers were quickly
designed, however these algorithms required a seed input to start initiate the
generation. Seeds were often used from sources such as the system tie recorded by
the operating system. These types of random numbers were known as pseudo-
random as the process seeding the number generator is not random. Soon, computer
science required true random numbers for fields such as machine learning and
cryptography. The seeds for the number generators used in these applications
extracted data from a random process found in nature. Commonly used random
processes include radioactive decay, Brownian motion, and atmospheric noise. The
National Institute for Standards and Technology (NIST) maintains and lists
standardized testing procedures for evaluating the effectiveness of random number
generators for high security applications such as cryptography [1].

Motivation
Current popular random process used for true random number generation are
expensive and inaccessible for many organizations. Researchers are exploring other
types of natural phenomena that are suitable for true random number generation [2].
Lava lamps are vases that display the movement of a gel when it is exposed to heat
and allowed to cool after rising. The moved of the gel is an unpredictable and high
entropy process. By extracting data from this random process, an inexpensive true
random number generator could be constructed.

Figure 1: Snap Shots of Lava Lamp Illustrating Random Process

Methodology
To extract the data from the lava lamp that describes the random process, the
following methodology will be used. First, pictures will be gathered from the lava lamp
and these pictures will be annotated. Next these pictures will undergo data
preprocessing to be prepared for input to an object detection machine learning
model. This model will be trained and continually evaluated until the model’s error is
sufficiently low. Finally, the model with be tested and used to seed a random number
generator. By evaluating the histogram produced by a normally distributed random
number generator, the effectiveness of the model at generating true random numbers
will be determined.

Figure 2: Random Data Extraction

Data Gathering
Pictures of the lava lamp were taken at 5 second intervals to ensure enough time had
passed for the lava lamp to change positions. Pictures were taken with the lava lamp
in two separate locations to help ensure the dataset could train the model to function
when the lava lamp was in different locations. To further help with the flexibility of the
applicability of the model, pictures were taken from a variety of angles and positions.
In total 164 images were taken providing 699 samples in total (average of 4.3
samples/image).

Figure 3: Image Annotation

A python program called LabelImg (see above figure) was used to annotate these
images. The resulting annotation output was saved in xml format for later processing.

Data Preprocessing
The xml file from the annotation stage provided a convenient format to store
annotation data from a specific image. The xml annotation data described the
coordinates of each bounding box (x1, y1, x2, y2) and the name of the class describing
the object within the bounding box (“lava”). This data was loaded into a pandas
DataFrame using he xml module from python to parse the xml. The records of the
DataFrame were randomly shuffled to evenly distribute the various backgrounds and
image angles throughout the dataset. Once complete, this DataFrame was exported
to a csv file for convenient and compact storage.

Upon reviewing the csv file, it was determined that the annotation software produced
some invalid data samples (bounding box coordinates outside the range of the
picture). Thus, a python script was used to check every sample’s data for validity and
removed any records that did not meet the requirements from the csv. The final step
to finish preparing the data was to convert the csv to a TensorFlow record file. This
is a data format based on NumPy arrays and is a standardized layout for data being
fed into TensorFlow models.

Figure 4: Data Preprocessing Steps

Model Selection
Object detection machine learning models are complex to design due to the multiple
data inputs that need to be fed into the network and the multiple targets the network
must predict. The inference and training should be performed as quickly as possible;
however, the complex design makes this challenging. TensorFlow has many prebuilt
models publicly available that have been researched. Many of these models are
available pre-trained on a standardized data set either for immediate use or to
shorten training time to learn detection for new objects. It should be noted that these
object detection models are only compatible with TensorFlow versions 1.x and Python
versions 3.7 and below.

There are numerous notable network styles to consider, and active research is being
performed to design more efficient and accurate object detection networks. The
three main models considered were Convolutional Neural Networks (CNN), Single
Shot Detectors (SSD), and Spatial Pyramid Poolers (SPP). The below table
summarizes the main benefits and drawbacks of these models. Other models should
be evaluated in future studies.

 CNN SSD SPP
Benefits - Deeply studied

- Easier to
understand and
self-architect

- Best detector for
speed and
accuracy for
feature map
extraction and
convolutional filter
applications [3]

- Plentiful
documentation

- Well suited to
arbitrary image
sizes and scales

- Avoids repeatedly
computing
convolutional
features

Drawbacks - Training is
unpredictable and
long

- Training is
multiphase

- Network
predictions are
comparatively
slow at inference
time

 - Poor
documentation

- Few practical
examples of
implementation

Models R-CNN, Fast-R-CNN,
Faster-R-CNN,
Mask-R-CNN

MobileNet, ResNet,
SpaghettiNet

SPPNet

Figure 5: Object Detection Model Summary

An SSD was used as this model had plentiful documentation was available online and
reported the fastest training times. Specifically, the ssd_mobilenet_v2 model was
selected and a pre-trained checkpoint form the common objects in context (COCO)
dataset was utilized. The below figure depicts the network architecture of a similar
SSD model [3].

Figure 6: SSD Network Architecture

Training and Evaluation
For conducting training on prebuilt TensorFlow models, TensorFlow provides a
training script that simultaneously trains and evaluates the model. The model was
trained with the recommended learning rate of 0.004 and an exponential learning
decay factor of 0.95. The input was data was split into 150 images for training and 14
images for evaluation. The TensorFlow script performed 100 steps of training, then
ran the model against the evaluation set to monitor progress. The overall total loss
equation is depicted below. It is a function of the error in the confidence of the
predicted bounding box location, and a function of location loss. The location loss
describes how far the predicted bounding box is from the target ground truth. The
training script also output the current intersection over union (IoU) performance

𝐿(𝑥, 𝑐, 𝑙, 𝑔) =
1
𝑁 (𝐿!"#$

(𝑥, 𝑐) + 	𝛼𝐿%"!(𝑥, 𝑙, 𝑔)
Figure 7: MobileNet SSD Total Loss Function

The initial total loss started out at 95. For the first 24 hours of training, the total loss
decayed linearly to 13. During the final 12 hours the error decayed exponentially from
13 to a final total loss of 10.54. Some IoU values rapidly rose to 1, while others
struggled to get above 0.05. The ideal total loss by the end of training was less than
1, with values below 2 also being accepted. Due to time and computational
constraints, the model was not able to be trained to this accuracy. Having a larger
data set would be beneficial for improving the final trained state of the model.

Model Performance
To analyze the performance of the model, inference was performed on the entire data
set. The detection confidence scores were below the target of >0.9 at an average
0.34. While disappointing, this was expected with the high total loss and IoU errors at
the end of model training. The top and bottom 3 detection confidence scores were
recorded and the images were displayed with the ground truth and predicted
bounding boxes. The figure below depicts the highest performing image. Inference
time also came in lower than expected with an average inference time of 1.29 seconds
per image.

Figure 8: Trained Model Performance

Random Number Generation
To generate random numbers, data about from the random process displayed by the
lava lamp needs to be extracted. With the trained model, the number generator can
now be tested. The below equation was used to generate a seed for a random number
generator from the data output after inference. The equation calculates the center of
each blob of lava, and then calculates the weighted average position by multiplying
each pair of coordinates by the size (bounding box area) of the lava blob. Finally, the
x and y coordinates were multiplied together to get a single seed number.

𝑅𝑎𝑛𝑑𝑜𝑚	𝑆𝑒𝑒𝑑 = 	 78
(𝑥&,(− 𝑥),()

2

#

(*+

∗ 𝑎𝑟𝑒𝑎	= ∗ 	78
(𝑦&,(− 𝑦),()

2

#

(*+

∗ 𝑎𝑟𝑒𝑎=

Figure 9: Random Number Seed Extraction Equation

The seed generation was tested by generating numbers in the ranges [0, 10], [0, 100],
and [0, 1000]. The below histograms depict the distributions of the generation. Ideally
the plots should be uniform and rectangular, however I predict there are two factors
preventing this result. First, the model is not accurate enough to successfully extract
the random data from the lava lamp. This likely results in a bias being introduced that
disqualifies the result from being considered a true random number generator.
Second, the data sample is not large enough to see the true distribution of random
numbers being generated as the sample sizes tends to infinity.

Figure 10: Random Number Generation Distribution

Future Work
The most important next step is to improve the accuracy of the object detection
model. First, the process for picturing gathering will be automated to collect a much
larger data set of images. These new images will also need to be annotated. Using
the new data set, multiple instances of the new model will be trained. These new
instances will experiment with different configuration such as no starting checkpoint,
varying learning rates, and different variations of prebuilt TensorFlow object
detection models. Training these models on google collab will be explored to improve
the training time currently being performed on a PC.

The improved model will then be tested for its effectiveness at extracting random
data which will be used to determine if the numbers being generated are true random
numbers. NIST maintains standardized testing procedures for evaluating the
effectiveness of random number generators for high security applications such as
cryptography [1]. The dataset will be evaluated to determine its efficacy for true
random number generation.

References

[1] E. Barker and L. Bassham, "Random Bit Generation," NIST, 9 Jul 2014. [Online].

Available: https://csrc.nist.gov/projects/random-bit-generation/documentation-
and-software. [Accessed 14 Dec 2021].

[2] R. Katyal, A. Mishra and A. Baluni, "True Random Number Generator using Fish
Tank Image," International Journal of Computer Applications, vol. 78, no. 16,
2013.

[3] L. W. e. al., "SSD: Single Shot MultiBox Detector," European Conference on
Computer Vision, vol. 9905, pp. 21-37, 2016.

Appendix

Presentation Slides

Machine
Learning for
Random
Number
Generation
Dylan Rae
30020151

Background

• Random numbers are needed in many areas of computer science
• Cryptography

• Machine Learning

• Typically, a computer only generates pseudo-random numbers

• By extracting data from a source of entropy (random process), a true
random number can be generated
• Radioactive decay

• Brownian motion

• Atmospheric noise

• Researchers are exploring other natural phenomena that random
data can be generated from (see paper here)

https://research.ijcaonline.org/volume78/number16/pxc3891419.pdf

Problem & Motivation

• Extracting data from sources of
entropy mentioned previously
such these is complex and
expensive
• Problem: Use entropy produced

by a lava lamp to generate true
random numbers
• The positions and sizes of the

“lava” in the lava lamp will be
random
• By detecting the position and

sizes of the “lava”, this data can
be fed into a random number
generator

ML Extraction

Random Numbers

Step 1: Data Gathering & Annotation

• Pictures were taken with
2 different backgrounds
at 5 second intervals

• Variety of angles and
positioning used

• Program called labelImg
was used to annotate
and save in xml format

164 699images samples

Step 2: Data Preparation

XML
• Stores bounding box sizes and position
• Xml module makes it easy to extract data

DF
• Xml data loaded into a DataFrame

CSV
• Exported to csv for easy storage and viewing
• Wrote a data validator to remove invalid entries

TFREC
• Data format based on NumPy arrays
• Standardized for feeding into TensorFlow models

Step 3: Model Selection

• Slow training for
object detection

• Uses selective
search algorithm
and bounding box
regression
• Models are R-

CNN, Fast-R-CNN,
Faster-R-CNN,
Mask-R-CNN

• Good for
detecting images
of varying sizes
• Fast training and

inference
• Plentiful

documentation
• Models are

Inception,
MobileNet,
ResNet,
SpaghettiNet

• Good for arbitrary
image size and scale

• Avoids repeatedly
computing
convolutional
features

• Popular model is
SPPNet

CNN
Convolutional Neural Network

SSD
Single Shot Detector

SPP
Spatial Pyramid Pooling

Step 4: Training and Evaluation
• Trained with a model called ssd_mobilenet_v2

• Started with checkpoint of model after being pretrained on the COCO data set
(common objects in context)

• Used the recommended learning rate of 0.004 with an exponential decay factor of
0.95

• Training data was 150 images, evaluation set was 14

• Using a TensorFlow provided script model was trained through 100 steps, then
used an evaluation set to monitor progress

• First 24 hours linear decay from 95 à 13, next 12 hours exponential decay very
slow

• Total of 11508 steps with final total loss of 10.54 (total loss compares error from
class and position detection)

• Some IoU values struggled to get close to 1 (how well the predicted bounding box
matches ground truth)

Step 5: Model Performance
• Very low detection confidence

scores (average of 0.34)
• Occasionally can detect

correctly, but errors need to be
lower and confidence scores
need to be >0.9
• Takes approx. 1.29 secs to

perform an inference on an
image

Ground Truth
(Target)

Model Output

Random Number Generation

• Used python random number and seeded positions of boxes to
a generator

• Generated numbers between 0à 1000

Next Steps

• From scratch (no checkpoint)

• Varying learning rate

• Other pre-trained checkpoints

Automated process for data gathering

Annotate this data to produce a much larger data
set

Train multiple instances of model using google collab

Test according to NIST standards outlining requirements
for true random number generation available here

https://csrc.nist.gov/projects/random-bit-generation/documentation-and-software

